SOA from the trenches

Jordi Pradel

The project

13th Century Social Network of Deeds in France
(http://www.howweknowus.com/2008/07/23/great-work-lousy-title/)

The project

* Development of a new implementation of an
existing social network:

— Mobile and geolocation capabilities
— Over 500K users
— Mobile clients: iPhone, Java ME, Android
— Backend
e Existing system not properly scaling
— PHP backend

Main features

* Friendships
— Friendship requests, accept, deny,
block users

* |nterests (moderated)
Likes 4

— Subscribe to interests, create new 75 ikes
interests, send mass messagesto W1
m . -
.] CaixaFor Asimov Los
— Interests do have a profile picture aves
— Aprox. 90k interests

everyone that has an interest ﬁ
um Suaves

Main features

* Profile picture (moderated)
* Online / Offline status .

.
gl ¥ B

e Status: One line message of the current status
of the user (moderated)

— Connected to Twitter

Els Amics de les Arts
Cravant una entrevista per TV3 en un Bowling!!!!

190 - Like - Comment

Some complex features

* The messaging system as a chat wannabe
— Mail like
— Messages to interests (up to 30k users)
— Notification of new messages to devices
— Message sent by email as well

* List of everything every user did

— Friendships, status changes, interests, messages,
etc.

Some complex features

* (Almost) every list of users has some interesting
tags:
— Current status (one line message)
— Distance in friendship graph to the logged in user
— Number of friends in common with the logged in user

— Friendship status to the logged in user (friends,
pending friendship request, etc.)

— Number of interests in comon with the logged in user
— Online / Offline status
— Profile picture

Some complex features

* Friendship connection

How you're connected to Andy

You

<+
Mike Cohn

\ 4

I2 3]' Andy Hunt

Some complex features

* |Interesting people

People You May Know

Jordi Bosch i Garcia, Secretari de X
Telecomunicacions i Societat de la Informacié at
\ © Connect

Francisco Valcarreras Luque, Sr. Consultanten X
Avanade
© Connect

Q

) @

Camille Salinesi, Maitre de Conférences at X
Université Paris 1 - Panthéon Sorbonne

© Connect

See more »

— Interests in common
— Contacts in common
— Location

Encounters

* Locate the user device on each request

e Look for:
— Users at bluetooth range
— Users in a 2 km radius

— Users in a 7 km radius

— Users in a 50 km radius

* Create encounters

— Directly and transitively

Architecture overview

Clients
Mobile client Current web
application client

Compatibility layer

APIs
. é
Business Layer L Message Bus
Services layer
Interests Users Etc.

()

J)0 u

Projects

apis * activity
business logic e session
helper libraries e status
device notification * settings
Image storage * interests
* users
* encounters
* friends
* |ocation

* marketing
* messaging

Practice and theory

© O O Java EE - com.akaaki.business-logic/src/main/java/com /akaaki/business/c impl/ S =
&0 Q| G-6- 5 [£0Team Synchr... %5Debug [@SVN Reposit... 7 Java EE
Pe BT R|& -5l Svor
11 usersControllerimpljava &3 [J) =5
i Ljava 2 [J) UserTinyProfile.java
¢ if (onlineUsers.get(userld) —- false)
[+
B userIdsTolist.remove(userld);
=] =l
}
}
Collection<UserInfoServiceBean> usersInfo = ce.listUsers(Li .name, true, use
List<UserTinyProfile> elements = getUserTinyProfiles(visitorld, usersInfo.getElements(), resolveRel
return new Collection<UserTinyProfiles(elements, pageSize, offset, usersInfo.getTotalElements()); &= =
i =)
A public L\st<UserT\nyProﬁ1e> getUsersTinyProfiles(Long userld, List<Long> userlds, boolean resolveRelc
Collection<UserInfoServiceBean> usersInfo = ce.listUsers(Li .list, true, use g
ListserTinyProfiles result = getUserTinyProfiles(userld, usersnfo.getElenents(), resolveRelotior
/ Sanity check f we find some missing user ; we
ign etu
a|
1F CComerlas size 1 usersInfo.getElements().size())) =
for (UserInfoServiceBean userInfo : usersInfo.getElements())
if (luserlds.contains(userInfo.getId())) —
logger.warn("missing user profile for userld:" + userInfo.getId()); ~
B
) 0
}
return result; —
X
= T

sRERBEEE N

Writable Sma...ert

o

THE PRENTICE HALL SERVICE-ORMENTED COMPUTING SERWES PRy

-~
-

Service-Oriented
Archltecture

nd?urncc
HMALL

In theory, there is no difference between theory and practice
attributed to Jan L.A. van de Snepscheut, Yogi Berra, Chuck Reid...)

Fundamentals: How services relate

* Services can be used by other services or
programs as far as they are aware of the
service they want to use
— Service description:

* Name

* Location
e Data exchange requirements

— Messaging

* Messages as independent units of communication

Fundamentals: How services relate

Clients

Mobile client Current web
application client

Compatibility layer

APIs

O

Services layer

e o

Google Twitter Apple Push
Location API Notifications

Fundamentals: How services relate

public class UsersController {
private UsersService usersServiceM

}

@Produces(MediaType.APPLICATION_JSON)
@Consumes(MediaType.APPLICATION_JSON)
public interface UserService {

@POST @Path("/")

public Long createUser();

@GET @Path("/name/{userName}")

public UserDTO getUserByName(@PathParam("userName") String
userName);

Fundamentals: How services are used

* How should we design...

— Services

 Web Services
e REST like

— Service descriptions
e Based on a Java Interface

— Messages
* Translated to REST + JSON parameters & return types

— Relationships between services
* Only from Business Layer to other services

Fundamentals: Principles of SO

v’ Low Coupling
v’ Service Contract
v’ Autonomy

v’ Abstraction

~ Reusability

v’ Composability
v’ Statelessness

x Discoverability

Fundamentals: Contemporary SOA

* Generally

— Based on open standards
* Pragmatism over heavy standards: REST

— Architecturally composable

— Capable of improving QoS
 INDEED!

* One of the main reasons in adopting SOA

Fundamentals: Contemporary SOA

e Support, foster and promote
v’ Vendor diversity
v’ Intrinsic interoperability
x Discoverability
XFederation
~ Inherent reusability
v’ Extensibility
x Service-Oriented business modelling
v’ Layers of abstraction
v’ Enterprise-wide loose coupling
v’ Organizational agility

Message Exchange Patterns

* Request-response

— Single destination, synchronous
— Main MEP

* Fire-and-forget
— Single destination, no response
— Could have been used, but wasn’t (see pub&subs)

* Publish-and-subscribe
— Asynchronous, JMS based
— Event system to avoid waiting for a response

Activity Management & Composition

Atomic transactions: Compensation instead
Business activities: There aren’t
Coordination

Orchestration

Addressing

Reliable messaging

Correlation

Policies

x Metadata exchange

v’ Security: Ad-hoc

v’ Notification and eventing: Internally

X ¥ ¥ ¥ ¥ ¥ ¥ %X

Activity Management & Composition

e Services

— Internal:
* Choreography written in Java
* No need for discoverability neither mgmnt activities

— External

* Choreography written in Java
— Java is easier to use than WS choreography tools

* Twitter, APN, Google location API
* Fixed providers: No need for disoverability
* Ad-hoc security on each one

Reality strikes!

® O O Java EE - com.akaaki.business-logic/src/main/java/ T — S
Ics- 2% 0 v | @S 5 E0Team Synchr... 5 Debug ESVN Reposi... |48 Java EE
[PBle Bm]@] R v v

[J] UserTinyProfile.java | ='6i=

g if (onlineUsers.get(userld) == false)
] {
TdsTolist. 1d);
B userIdsTolist.remove(userId) a

}

Collection<UserInfoServiceBean> usersInfo = usersService.listUsers(ListUsersOrderBy.name, true, use
List<UserTinyProfile> elements = getUserTinyProfiles(visitorld, usersInfo.getElements(), resolveRel

return new Collection<UserTinyProfile>(elements, pageSize, offset, usersinfo.getTotalElements()); =
=
& @0verride ol

A public List<UserTinyProfiles getUsersTinyProfiles(long userld, List<long> userIds, boolean resolveRelc

Collection<UserInfoServiceBean> usersInfo = usersService.listUsers(ListUsersOrderBy.list, true, use g
List<UserTinyProfile> result = getUserTinyProfiles(userld, usersInfo.getElements(), resolveRelatior

// Sanity check: Let's warn if we find some missing user profiles as we

gnore them and only return

/ those from existing users =]
if ((userlds.size() != usersInfo.getElements().size())) ol
{ =

for (UserInfoServiceBean userInfo : usersInfo.getElements())
if (luserlds.contains(userInfo.getld())) B
{ =)

logger.warn("missing user profile for userld:" + userInfo.getId());

}
return result;
vo

| o® Writable Sma..ert | FEHBMRERE NP

Listing users

* (Almost) every list of users has some interesting
tags:
— Current status (one line message)
— Distance in friendship graph to the logged in user
— Number of friends in common with the logged in user

— Friendship status to the logged in user (friends,
pending friendship request, etc.)

— Number of interests in comon with the logged in user
— Online / Offline status
— Profile picture

Listing users

oy last activity (online only / all)
Oy signup date
Oy interest

visitors of a user profile
friends of a user

by country

interesting people

Listing users: Interesting people

* |Interesting people

People You May Know

Jordi Bosch i Garcia, Secretari de X
Telecomunicacions i Societat de la Informacio at
&\A

© Connect
Q
) Q

Francisco Valcarreras Luque, Sr. Consultanten X
Avanade

© Connect

Camille Salinesi, Maitre de Conférences at X
Université Paris 1 - Panthéon Sorbonne

© Connect

See more »

— Interests in common
— Contacts in common
— Location

Listing users

1. Query users service to get users info

— Name, sex, age, city, country, signup date, etc.
2. Query interests service to get users interests
3. Query friendship service to get users friends

4. Query activity service to get users activities

Listing users

e Lists are paginated
 Over 500K users in the DB

* Therefore:
— Order&filter criteria is really important!

— e.g. List friends of mine (from friends service) whose
interests include interest | (from interests service)
ordered by signup date (from users service)

— None of the services can paginate and filter by itself

 We need to paginate and filter across services

Caching

 Some service requests are easy to cache at
the service level

— GET /users/profile/23

* Others are really difficult

— GET /users/profile?id=23&id=34&... (hundreds of
ids)

* So, service requests were cached at the client
level by hand

— Ugly, | know, but efficient

Low coupling

* How could we maintain low coupling between
services?

— Services never use other services
— They are like DBs on steroids

— Only the Business layer is coupled to every other
service (which is quite a high coupling)

Eventing

Some business processes are better modeled
with eventing in mind

— When a user sends a request from a mobile device...
* The request must be served
* The device must be located
— Then, encounters with other users must be triggered

* In case the request is interesting to marketing, the event
must be recorded in a marketing DB

* In case an Apple device is interested (e.g. someone who has
been encountered), the device must be notified

e Similar for bluetooth devices found

— Therefore: An event is generated and multiple
components subscribe to it

Eventing

public void onEvent(UserLocated event) {

Map<Long, Float> users =
locationController.getUsersNearLocation(...);

for (Long encounteredId : users.keySet()) {
triggerEncuntounter(event.getUserld(), encounteredld);

Performance & Scalability

* Greatly improved!

e Attending a request is a matter of
coordinating N services
— e.g. Many services to list users

— e.g. Many services when the device provides a
location

 But we can serve partial results

Performance & Scalability

* Bottlenecks are located in a single service, which may
not be critical

— e.g. Marketing was executing huge queries against he
production DB
e e.g. Total number of users per month and country
* Marketing is only stressing the marketing DB now
* Which contains information originated in events marketing is
listening to
— Every service can be fine-tuned to its usage scenarios
DB
e Caching
* etc.

— Some services could use different DB technologies

Performance & scalability

 We needed bulk requests

— e.g. Listing users requires the online/offline status
of hundreds of users

— We can’t query it one by one
* e.g. 1 request—>1 ms
* 500 requests —> 0.5s

e Transactions?
e 1tx->10ms

* Are they really needed?

Conclusions & Lessons learned

Jean-Honore Fragonard — The Music Lesson

Conclusions & Lessons learned

Partitioning into services is critical

Test & measure to find bottlenecks before optimizing
blindly

Need for an application layer which uses services and
composes a rich functionality
— Very high cohesion of services
— Services tend to be quite simple
— This layer has an important level of coupling
Good architecture in technical terms
— Solves performance & scalability issues
Diagnosis gets worse
— We need to identify a request across all the services

Thanks!

jpradel@essi.upc.edu

o/
av. meridiang 519 Ir
08016 barcelona

tel. 93 354 1) 78
fax. 93 354 12 23

www.ogilogy‘com

