
Complexity Made Simple

Philippe Kruchten

1 Copyright © 2005-11 by KESL Feb. 2011

Philippe Kruchten, Ph.D., P.Eng.

at Universitat Politècnica de
Catalunya

Barcelona, June 2012

Philippe Kruchten, Ph.D., P.Eng., CSDP

Professor of Software Engineering
NSERC Chair in Design Engineering
Department of Electrical and Computer Engineering

University of British Columbia
Vancouver, BC Canada
pbk@ece.ubc.ca

Founder and president
Kruchten Engineering Services Ltd
Vancouver, BC Canada
philippe@kruchten.com

3 Copyright © 2012 Philippe Kruchten

Philippe Kruchten

Copyright © 2011 by Ph. Kruchten

Complex looks simple…

Copyright © 2011 by Ph. Kruchten

Complex looks simple…
… but simple is complex

Copyright © 2011 by Ph. Kruchten

Feb. 2011 Copyright © 2005-11 by KESL 7

 “Complexity is the enemy of computer
science, and it behooves us, as designers, to
minimize it.”

 Charles Thacker, CACM, July 2010.

Feb. 2011 Copyright © 2005-11 by KESL 8

 “Complexity is the enemy of computer
science, and it behooves us, as designers, to
minimize it.”

 Charles Thacker, CACM, July 2010.

 “The task of the software development team
is to engineer the illusion of simplicity.”

 Grady Booch, OOAD Book, 1994

Feb. 2011 Copyright © 2005-11 by KESL 9

Scale

 Many things

Copyright © 2011 by Ph. Kruchten

Scale

 Many things

Diversity

 many different kinds of things

Copyright © 2011 by Ph. Kruchten

Scale

 Many things

Diversity

 Many different kinds of things

Interdependencies

 between all these many things

Copyright © 2011 by Ph. Kruchten

Scale

 Many things

Diversity

 many different kinds of things

Interdependencies

 between all these many things

Kinds of Things = features, services, LoC,
classes, stakeholders, developers,
sites, technologies, managers, ….

Copyright © 2011 by Ph. Kruchten

Complexity
• What make Systems complex?

– Scale
• Many “things”

– Diversity
• Many different kinds of “things”

– Interconnectivity
• Many “things” connected to many things in different

ways

• Apparent lack of determinism, predictability

• “things” = features, developers, stakeholders,
users, classes, SLoC, changes, technologies,….

Copyright © KESL 2011 14

Source: McDermid 2000

Intrinsic complexity

Copyright © 2011 by Ph. Kruchten

Intrinsic complexity

 essential complexity

Copyright © 2011 by Ph. Kruchten

Intrinsic complexity

 essential complexity

Extrinsic complexity

Copyright © 2011 by Ph. Kruchten

Intrinsic complexity

 essential complexity

Extrinsic complexity

 accidental complexity

Copyright © 2011 by Ph. Kruchten

Perceived complexity

Copyright © 2011 by Ph. Kruchten

Perceived complexity

 culture, familiarity, education

Copyright © 2011 by Ph. Kruchten

Perceived complexity

 culture, familiarity, education

Determinism

Copyright © 2011 by Ph. Kruchten

Perceived complexity

 culture, familiarity, education

Determinism

Visibility

Copyright © 2011 by Ph. Kruchten

Complex /= confusing

Complicated

 Complex

 Chaotic

Copyright © 2011 by Ph. Kruchten

Complexity

• Perceived complexity vs. real complexity
• Intrinsic complexity (<= nature of the system)

– Scale, Diversity, Interconnectivity

• Extrinsic complexity (<= environment)
– Embedding in organization
– Embedding in other larger systems
– Dependencies, visible and hidden
– Success (time to market, etc.)
– Dependability
– Autonomy

Copyright © KESL 2011 24

Source: McDermid 2000

Simplicity

Copyright © 2011 by Ph. Kruchten

Simplicity

 inverse of complexity ?

Copyright © 2011 by Ph. Kruchten

Simplicity

 inverse of complexity?

Parsimony

Uniformity

Copyright © 2011 by Ph. Kruchten

Simplicity

 inverse of complexity?

Parsimony

Uniformity

Predictability

Copyright © 2011 by Ph. Kruchten

Simple /= simplistic

Copyright © 2011 by Ph. Kruchten

 “Make things as simple as possible, but no
simpler.”

 Albert Einstein

Copyright © 2011 by Ph. Kruchten

 “Make things as simple as possible, but no
simpler.”

 Albert Einstein

Occam’s Razor or Lex parsimoniae:
“Entia non sunt multiplicanda praeter
necessitatem”

 William of Ockham, 14th century

Copyright © 2011 by Ph. Kruchten

 “… perfection is achieved not when there is
nothing left to add, but when there is nothing
left to take away.”

 Antoine de St. Exupéry,
 Terre des Hommes, 1939, chap.3.

Feb. 2011 Copyright © 2005-11 by KESL 32

Simplicity

• Parsimony

• Uniformity, regularity

• Clear partition of concerns

• Inverse of complexity?

Feb. 2011 Copyright © 2005-11 by KESL 33

Perception of simplicity

• In the eye of the beholder

• Not perceived uniformly by all stakeholders
– Education, culture, frequency of interaction, etc.

• Cognitive aspects

• Increased sense of determinism
– Not chaotic system

• Simplicity = paucity

• Simplicity = limitation

• Simplicity = overconstraints

Feb. 2011 Copyright © 2005-11 by KESL 34

See: Kurtz Snowden 2003

Towards simple

• Limit number of (visible) things
– Few technologies, people, interfaces, etc…

• Limit number of (visible) types of things
– Harder

• Limit interconnections, dependencies
– Both in numbers and in kinds

• Increase perceived determinism
– “if I do this, this will happen”

• Engineer the illusion of simplicity

Feb. 2011 Copyright © 2005-11 by KESL 35

Heuristics to Address Complexity

• John Maeda has provided some “Laws of
Simplicity”—heuristics for managing
complexity

– Reduce: the number of kinds of things

– Hide: removing elements from select viewpoints

– Shrink: expose a simplified view

– Organize: impose a pattern

• But how do we realize these heuristics?

36

A “Simple” Example

• The internet:

– Large numbers of things

– Large numbers of types of things (servers, routers,
nodes, protocols, …)

– Large numbers of relationships

• How have Maeda’s heuristics been applied to
the internet?

37

A “Simple” Example - 2

• Reduce: strict control on the number of types of
things (managed by the W3C)

• Hide: lower level protocols and physical
infrastructure are all hidden

• Shrink: Google.com is a shrunk representation of
millions of nodes

• Organize: many patterns—e.g. P2P, client-server,
SOA, broker—are used to structure the internet

38

• Expose

Feb. 2011 Copyright © 2005-11 by KESL 39

The System

Copyright © 2011 by Ph. Kruchten

The System

The Community around the system

Copyright © 2011 by Ph. Kruchten

The System

The Community around the system

Copyright © 2011 by Ph. Kruchten

Version 2.3 43

Classifying Systems
Higher Technical Complexity
 - Embedded, real-time, distributed, fault-tolerant
 - Custom, unprecedented, architecture reengineering
 - High performance

Lower Technical Complexity
- Mostly 4GL, or component-based
- Application reengineering
- Interactive performance

Higher
Management
Complexity
 - Large scale
 - Contractual
 - Many stake holders
 - “Projects”

Lower
Management
Complexity
 - Small scale
 - Informal
 - Single stakeholder
 - “Products”

DoD MIS System

DoD Weapon System

Enterprise IS
(Family of IS
Applications)

Telecom
Switch

Case Tool
(Rose, SoDA)

National ATC System

Commercial
Compiler

Business
Spreadsheet

IS Application
Distributed Objects

(Order Entry)

Small Scientific
Simulation

Large-Scale
Organization/Entity

Simulation

 An average software project:
 5-10 people
 10-15 month duration
 3-5 external interfaces
 Some unknowns, risks

Embedded
Automotive

Software

IS Application
GUI/RDB

(Order Entry)

Version 2.3 44

Process Tailoring
Higher Technical Complexity

Lower Technical Complexity

Higher
Management
Complexity

Lower
Management
Complexity
 • Less emphasis on management perspective

• More process freedom
• More emphasis on individual skills
• More emphasis production/transition

• More emphasis on management perspective
• More process formality/ceremony
• More emphasis on teamwork and win/win
• Longer Inception/elaboration

• More emphasis on domain experience
• Longer inception/elaboration phase
• More iterations, risk management
• Less predictable costs/schedules

• More emphasis on existing assets/knowledge base
• Shorter inception/elaboration phases
• Fewer iterations
• More predictable costs/schedules

How do we design for complexity?

Architecture to the Rescue!

Architecture as a partial
answer to complexity

• Level of abstraction

• Divide-and-conquer approaches

• Filter for “things”

– Technologies, requirements, teams, etc…

• Blueprints for other activities

• Congruence (Conway’s Law)

Feb. 2011 Copyright © 2005-11 by KESL 46

Simplicity, driven by architecture

• Parsimony

• Uniformity, regularity

• Clear partition of concerns

• Right level of abstraction

• Modularity, encapsulation

Feb. 2011 Copyright © 2005-11 by KESL 47

The System Architect’s Toolkit

• System architects have developed tools for
dealing with complexity over the decades:

– Knowledge management: representation,
modeling, design methods, ontologies, …

– Design principles: modularity, abstraction,
separation of concerns, …

– Patterns: brokers, layers, SOA, P2P, …

– Tactics: building blocks, aggregation,
interaction

• We will focus on patterns and tactics.

48

Patterns

An architectural pattern

– is a package of design decisions that is found
repeatedly in practice

– has known properties that permit reuse, and

– describes a class of architectures.

“I have not failed. I've just found 10,000 ways
that won't work.”

 - Thomas Edison

49

Patterns

50

Tactics

An architectural tactic is a design
decision that affects a quality attribute
response

Patterns describe holistic solutions; tactics
describe “atomic” architectural strategies.

51

Patterns: Hierarchy

• Herb Simon: “complexity frequently takes the
form of hierarchy” (1962)

– Such hierarchies need to be “nearly
decomposable”

• The hierarchy pattern aids in taming
complexity by:

– preventing arbitrary relationships

– enforcing selective visibility

– simplifying pruning

52

Patterns: P2P

• The largest complex systems are organized as
a set of peers

• The peer-to-peer pattern aids in taming
complexity by:

– avoiding centralized resources

– allowing for flexible organization

– allowing for dynamic reorganization

53

Patterns: Core-Periphery

• The module structure of many complex
systems is bifurcated into: 1) a core (kernel)
infrastructure, and 2) a set of peripheral
functions or services

• The C-P pattern tames complexity by dividing
the engineering problem:

– the core provides little end-user functionality; it
provides the foundation

– the majority of the functionality lives in the
periphery

54

Tactics

55

Scalability

Building blocks Aggregation Interaction

Modularity

Self
description

Environment
Models

Self-similar
structure

Heterogeneity

Parallelism

Abstract
Connections

Connection
Shuffling

Load
Balancing

Gossiping

Tagging

Tactics: Modularity

• A time-honored principle of software
engineering

• It has been argued to support super-linear
growth in software.

56

Tactics: Gossipping

• Nodes need to interact to adapt to their
ever-changing state and environment.

• Neighboring nodes need to be constantly
“gossiping”, exchanging topological and
task-specific information .

57

Tactics: Self-similar Structure

• Complex systems must treat collections of
entities (and collections of collections)
similarly to individual agents: a fractal
structure.

• This makes it easy for the system to be self-
configuring and self-adapting.

58

A Brief Example: MANETs

• MANETs (Mobile Ad hoc NETworks) exhibit many
of these design approaches:

– Pattern: Nodes are independent peers, operating in
parallel with all others

– Tactic: Nodes are modular: do not expose internals;
interact via a well-defined interface

– Tactic: Nodes may be heterogeneous, sharing only a
common communication protocol

– Tactic: Nodes may be nested (i.e. a hierarchy). In fact,
nodes exhibit self-similar (fractal) structure.

59

Conclusions - 1

• We began by claiming that a designer
needs to reduce, hide, shrink, and
organize to be able to tame
complexity.

• We claim that patterns and tactics are
templates for achieving these goals in
a systematic way.

60

Conclusions - 2

By employing patterns and tactics, a designer is
faced with a simpler, more constrained set of
tasks than designing from scratch:
1. choosing the set of primitives to cover all

system functionality, while keeping the
number of primitives small

2. finding regular, systematic ways of
assembling the primitives into more
complex aggregates

3. minimizing the forms of interaction
between the primitives, or aggregates, and
keeping these interactions flexible and
adaptable.

61

Readings

• McDermid, J. A. (2000). Complexity: concept, causes and control. Paper
presented at the Sixth IEEE International Conference on Engineering of
Complex Computer Systems (ICECCS 2000).

• Maeda, J. (2006). The laws of simplicity. Cambridge, MA: MIT Press.

• Cook, R. I. (2000). How complex systems fail. Cognitive Technologies
laboratory, University of Chicago.

• Kurtz, C. F., & Snowden, D. J. (2003). The new dynamics of strategy:
Sense-making in a complex and complicated world. IBM Systems Journal,
42(3), 462-483. (see also Cynefin framework)

• Nielsen, J (1993). Usability Engineering, Morgan Kaufman. (see 10 usability
guidelines at: http://www.useit.com/papers/heuristic/heuristic_list.html)

• Booch, G. (2004). The illusion of simplicity Available from
http://www.ibm.com/developerworks/rational/library/2096.html

• Sha, L. (2001). Using Simplicity to Control Complexity. IEEE Software,
18(4), 20-28.

• Suh, N.-P. (2005). Complexity in Engineering. Annals of the CIRP, 54(2), 46-
63.

Feb. 2011 Copyright © 2005-11 by KESL 62

http://www.useit.com/papers/heuristic/heuristic_list.html
http://www.ibm.com/developerworks/rational/library/2096.html

More references

• Kazman, R., & Kruchten, P. (2012). Design
approaches for taming complexity.
Proceedings of the IEEE International
Systems Conference (Syscon2012),
Vancouver, BC.

• Kruchten, P. (2012). Complexity made
simple. Proceeding of the 2012 Canadian
Engineering Education Association
Conference (CEEA12), Winnipeg, MB.

Feb. 2011 Copyright © 2005-11 by KESL 63

